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Abstract

Efficient design of hardware and software for large-scale parallel execution
requires detailed understanding of the interactions between the application,
computer, and network. We have developed a macroscale simulator (SST/macro)
that permits the coarse-grained study of distributed-memory applications.
Currently, applications using the Message Passing Interface (MPI) are simulated;
however, the simulator is designed to allow inclusion of other programming models.
The simulator is driven from either a trace file or a skeleton application. Trace files
can be either a standard format (Open Trace Format) or a more detailed custom
format (DUMPI). The simulator architecture is modular, allowing it to easily be
extended with additional network models, trace file formats, and more detailed
processor models. We describe the design of the simulator, provide performance
results, and present studies showing how application performance is affected by
machine characteristics.

1 Introduction

The degree of parallelism that must be exposed to efficiently utilize modern
large-scale parallel computing systems is intimidating. Because individual processor
performance gains are currently achieved primarily through multiple cores on a
chip and multiple threads of execution in a core, the rate at which parallelism must
be exposed by an application will increase as a function of overall machine
performance relative to historical trends. This results in greater design complexity
for both machine architects and application software developers. The use of
simulation, however, can aid both in their efforts to obtain high utilization from
future computing platforms.

Simulation is already used extensively in the design of computing systems for
both functional verification and timing estimation. As an example of the range of
capabilities available, including just a few examples of open-source timing
simulators, there are processor simulators (Binkert, et al., 2006; M5Sim), memory
simulators (Jacob; Wang, et al,, 2005), and network ns-3 (ns-3).

Several simulators have been developed to generate performance estimates
for high-performance computing architectures. These range from high-fidelity and
computationally expensive simulators for measuring performance between two
nodes (Rodrigues, et al., 2003; Underwood, Levenhagen, & Rodrigues, 2007) to
lower-fidelity and lower-cost simulators that can estimate performance on large-
scale machines. These lower-fidelity simulators use a variety of approaches to
generate the application’s processor and network workload including tracing, direct
execution, and the use of skeleton applications. Additionally, the flow of data
through the network is modeled with varying fidelity. In the present paper we are
concerned with lower-fidelity and lower-cost simulation techniques to enable
simulation at very large scales, and we will briefly discuss these simulator variants
in more detail, giving examples of simulators supporting each capability before
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turning to a detailed description of our simulator in Section 2.

When an application is traced, the full program is run in order to collect
information about how it executes. The resulting data is output into a trace file,
which contains data such as the time spent in computation and the amount of data
sent and received by each node. This trace file is read by the simulator, allowing it to
replay the run, adjusting the simulated times to account for differences between the
simulated machine and that which was used to collect the traces (Zheng, Wilmarth,
Jagadishprasad, & Kale, 2005). In the case of Message Passing Interface (MPI)
(Message Passing Interface Forum, 2008) traces, events that are higher level than
simple sends and receives are recorded, such as all-to-all broadcast or all-to-one
reduce. These network events along with associated parameters are logged without
the details of the underlying messages that are used to implement the operation. It
is the responsibility of the simulator to either convert these higher-level operations
into the low-level messages that implement the operation or to provide an
appropriate timing model that does not require simulation of the low-level
messages.

In the direct execution approach the full application is run on each node
(Prakash, et al., 2000; Riesen, 2006; Zheng, et al., 2005). This is different from
normal benchmarking because, instead of real time, a virtual time is used to
determine the execution time. The virtual time is computed by using a network
model to estimate communication times. The contribution to the virtual time due to
processor execution can be determined simply by using the measured real time for
non-communication work or by using a processor model. This model can be
informed by measurements of actual application processor utilization or more
detailed processor simulations.

The third approach to generating the machine’s workload does not use a full
application. Instead a so-called skeleton application is used that provides enough
information to the simulator for it to model both computation and communication.
This takes advantage of the fact that the computations needed to determine
program flow are a small subset of the total number of computations needed by
typical high-performance computing applications. The skeleton application can be
constructed in a variety of ways. An application programmer could directly program
a skeleton application, giving the programmer the opportunity to experiment with
different algorithms before having to write the full application. Existing applications
can be skeletonized by replacing portions of the code doing computation with calls
that instruct the simulator to account for the time implicitly (Susukita, et al., 2008).
Skeleton applications can also be constructed using automated analysis tools, for
example, using compiler analysis techniques to abstract away portions of the
application (Adve, Bagrodia, Deelman, & Sakellariou, 2002). Skeleton applications
have the advantage of capturing the essence of the application in sufficient detail to
enable reasonably accurate simulation while being much less expensive than
running the application.

Various approaches are also taken to model the network layer. These range
from relatively simple models that only consider endpoint congestion (Prakash, et
al., 2000) to accurate models that treat the flow of data through the network in
detail (Benveniste & Heidelberger, 1995; Petrini & Vannesch, 1997; Zheng, et al.,
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2005). In endpoint congestion models the only network bottlenecks are the nodes. If
two messages arrive simultaneously at a node, only one at a time can be received,
and the delay in reception of the second message is determined from simple
network performance characteristics such as the latency and bandwidth. This model
does not reflect the fact that internal to the network fabric there can be contention
for resources. Detailed network models are aware of the machine’s network
topology and use this information, along with other details such as routing
algorithms, to estimate message arrival times. Both approaches are useful in that the
endpoint congestion model provides an inexpensive way to obtain an optimistic
performance estimate while the more detailed models take into account the impact
on performance of machine topology and process layout effects.

In the present work we describe a macroscale simulator for estimating the
performance of large-scale parallel machines. The goals of the simulator are to assist
in system design and application development. The simulator is modular, permitting
multiple computation and communication models to be employed. This will allow
the study of architectures at a variety of fidelities so we can trade off the
computational cost of doing a simulation against the accuracy of the result. The
simulator will be distributed under an open-source license to maximize its
usefulness to the high-performance computing community. We focus on an
extremely lightweight implementation, rather than enabling parallelism in the
simulator itself. Parallelism can be easily introduced when performing independent
simulations of architecture variants. We also provide a detailed MPI model that
converts the high-level MPI events into the necessary communication operations.
Because the MPI capability is implemented to be modular, it is simple to investigate
the relative performance of various MPI algorithms. The simulator is designed to
allow the use of alternative programming models, as well.

Our work is done in the context of a larger project to develop a parallel
multiscale simulator that permits users of the simulator to select the desired level of
fidelity for each component of the machine. This larger project is an outgrowth of
the Structural Simulation Toolkit (SST) (Rodrigues, et al., 2003; Underwood, et al.,
2007) and the macroscale components described herein will be referred to as
SST/macro to distinguish them from the existing microscale SST components.

2 The Macroscale Simulator

The execution of an application on a parallel machine can be represented as a
collection of computation and communication events. These events have complex
but known dependencies; for example, a synchronization event must occur in all
parallel tasks before any task can move forward. We model the execution of these
events using a discrete event simulator. Using models to determine the duration of
these computation and communication events, the simulator determines event
completion times. Thus, the message timing of applications is determined, allowing
the efficiency and scalability of applications to be examined.

We avoid the synchronization overheads incurred by parallel discrete event
simulation and implement an extremely lightweight simulator within a single kernel
thread. Application tasks are modeled using lightweight threads, allowing the
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simulator to maintain the complex states of numbers of tasks ranging into the
millions. Application task threads use a well-defined interface layer to generate
simulation events, reproducing the coarse-grained communication and computation
loads of real applications. This lightweight implementation allows us to simulate up
to 200,000 MPI send/receive pairs per second on a single workstation, with a
memory footprint that scales linearly with the number of peers.

Figure 1 illustrates the high-level design of the simulator. The process layer
supports two execution modes, skeleton application and trace-driven, using
lightweight threads. Task threads create communication and compute kernels
which are parameterized with data for a particular communication operation or
compute block. Kernels for MPI operations, for instance, require the arguments to
the MPI call, while compute kernels require a description of the CPU instructions to
be simulated. Tasks interact with the simulator back-end by pushing kernels down
to the interface layer. The interface layer coordinates interaction with network and
CPU models and handles the scheduling of resulting events on the simulator back
end. The interface layer includes servers, such as mpiserver which manages
interaction with the network model in MPI contexts. When kernels are completed,
the process layer receives callbacks via request objects.

Application (Lightweight Threads)

Process

Requests

Interface

Kernels — Servers

JU9A3

SIEVE |
]
9y9|dwo)

39|dwo)

Simulator

Discrete Event Simulator

Figure 1: Application threads create communication and compute kernels and push
them down to the interface layer. The interface layer schedules events on the
discrete event simulator, possibly using calls to servers. Callbacks are made to the
process layer via request objects when events complete.

SST/macro is implemented in C++, allowing a flexible, modular design that
provides opportunities for modification and extension. The inheritance diagram



provided in Figure 2 highlights the flexibility of our design in the context of kernel
objects. As specified by the kernel base class, all kernels have start() and
complete() methods and maintain a list of event handlers which require
notification of the kernel’s completion. These are the only methods required by the
simulator to incorporate kernels as discrete events. The various specializations of
the kernel class handle the specific requirements of particular operations by
defining the start() and complete() methods. While calling start() on an
mpisendengine kernel results in a call to mpiserver: :send(), invoking a
network model to determine delays, a call to start() on a computekernel
results in a call to the node model associated with the task, invoking a processor
model. By encapsulating implementation details behind well-defined interfaces,
modules within the simulator can easily be replaced; for example, alternate
programming models could be simulated by replacing the MPI interface layer with
an interface layer supporting a different parallelization model.

| kernel |
1
|

computekernel | | mpikernel |

I mpicollective “ mpirecvengine ” mpisendengine |
A

|mpibarrierengine | I mpibcastengine | | mpidirectgathervl ———————

Figure 2: Inheritance diagram for kernel objects. Kernel specializations handle the
specific requirements of particular operations while providing a uniform interface
to the discrete event simulator.

The MPI Model

The Message Passing Interface (MPI) (Message Passing Interface Forum, 2008)
provides a standard interface for programming distributed memory parallel machines in a
portable and efficient manner. The MPI interface currently consists of over 200 function
calls providing a rich set of communication primitives. Two of the most common sets of
primitives include those for point-to-point communication and those for collective
communication. Point-to-point operations are available for a variety of modes, including
buffered, synchronous (will only complete after the matching receive is posted), and ready
(the matching receive must be posted before the send) modes. For each of these send
modes, as well as the receive calls, there are blocking (which have completed when they
return) and nonblocking (a separate call is used to check for completion) versions. In
addition to these point-to-point calls, collective operations that involve groups of
processors are commonly employed. These include such operations as all-to-all broadcast,
all-to-one reduce, all-to-one gather, and so on. Both the point-to-point and collective
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operations are typically implemented using a relatively small set of point-to-point
communication primitives which are specific to a particular networking technology.

Skeleton applications and MPI trace files typically provide information about only MPI
calls and their associated argument lists. This means that no information is available to the
simulator about the low-level point-to-point messages that a particular MPI library uses to
implement an operation. The timings due to the low-level operations must be modeled by
the simulator, and this presents us with the opportunity to implement a variety of models,
at varying levels of fidelity, to represent the MPI operations. At the low-fidelity, low-cost
end, MPI collectives can be treated without consideration of the low-level MPI
implementation. An analytic or empirical performance model could be used to determine
when each process will complete the operation, and a single simulator event to continue
execution of all processes at the appropriate virtual time would be inserted into the event
queue. A higher-fidelity approach, which is implemented in SST/macro, is to have the
simulator schedule events needed for all of the low-level data transfers in the same way an
MPI implementation would. If this is done while also using a network model that includes
congestion effects, then the effect of congestion on the collective operation time is estimated
by the simulator. In this way, the effects of changes in the MPI implementation can be
studied using the simulator.

Lightweight application threads perform MPI operations through calls to the interface
layer, resulting in determination of completion times for the required events by the
network model and the scheduling of these events with the discrete event simulator. A
timeline detailing the chronology of events scheduled by two lightweight application
threads performing typical operations is shown in Figure 3. When an MPI send or receive
operation is performed, the thread yields until the appropriate event is executed by the
simulator indicating that enough simulation time has elapsed for the data to have been sent
or received. Likewise with computation, the application trace or CPU model determines
when a computation operation completes and schedules a completion event with the
simulator. The application thread performing the computation yields until this completion
event is triggered.

THREAD O THREAD 1

MPI_Recv -+————————

Yield until data available T MPI_Send 1to 0

Schedule data sent
Schedule data recd
Yield until data sent
MPI_Send completes
Begin computation
Schedule completion

ME|_Recy completes Yield until complete

MPI_SendOto 1
Schedule data sent
Schedule data recd

Yield until data sent T Computation completes

MPI|_Recv

MPI_Send completes I Yield until data available
Continue processing 1 MPI_Recv completes
Continue processing

aulRwWIn
JUAS 23212510

-

Figure 3: A timeline for the interaction of two lightweight application threads with
the discrete event simulator for MPI send/receive operations and computation.



A simplified class collaboration diagram for the SST/macro MPI components is shown
in Figure 4. Application threads that utilize MPI are instances of classes inheriting from the
mpiapp class, which in turn inherits from the simulator’s generic class for threads,
thread. Three such MPI applications are shown in the figure: npIpingpong (a simple
ping-pong skeleton application), minimd (a skeleton molecular dynamics application
which is discussed in Section 2), and mpitrace (a trace file reader which is discussed in
Section 2). Each MPI application object references an mpiapi object, which provides the
MPI application programming interface. The mpiap 1 object uses an mpistrategy
object to simulate MPI communication by building the appropriate kernel objects (shown
in Figure 2). The mpistrategy object has a collection of strategies specialized for
particular operations. For example, implementations of the MP1_Barrier function are
specializations of the mpibarrierstrategy abstract base type. Specialized
implementations of barrier strategies can be provided, or the provided
mpicorebarrier specialization can be used. This specialization can provide a high-
fidelity barrier implementation typical of many actual MPI implementations or it can
perform a low-fidelity barrier that requires minimal processor time to simulate. These low-
fidelity collective operations are currently only used to synchronize the nodes after
MP1_Initis called. Otherwise, the high-fidelity MPI core operations are used in the
results presented herein.

| mpicorebarrier | I mpicoresend |
mpibarrierstrategy mpisendstrategy

[} N

I L ] _ - -

1 -~
| mpistrategy | I thread |

A

I

|

mpiapi mpiapp

| ~ ~ -
| mpipingpong | | minimd | I mpitrace |

Figure 4: Collaboration diagram for MPI components. Solid lines indicate
inheritance (is-a relationships) and dashed lines indicate containment (has-a
relationships).

The Network Model

As the next generation ultra scale systems increasingly rely on higher
concurrencies, the effect of the interconnection network on the overall system
performance becomes even more important, especially for applications with intense
communication loads. Consequently, there has been renewed interest in
interconnect design in the computer architecture community with many new ideas
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and promising results being reported. It is important to predict the performance of
these proposed interconnect ideas on modern high-performance computing
applications. We believe our simulator will be instrumental in this respect, as the
software framework allows easy integration of new methods to enable experiments
with proposed techniques on large scale, real world applications.

In keeping with the focus on modularity in the simulator design, the network
system is designed as a separate module in order to provide the flexibility required
to support a rich set of techniques. Moreover, the network can be simulated in
arbitrary detail, which allows trading off between fidelity and runtime of
simulations. For example, the network could simply be a latency-based model,
which assigns a pre-specified delay to each message, or a cycle-level model that
captures the finer details of a router. The general framework can support any
topology, routing algorithm, etc., and can be easily tuned for network parameters
such as bandwidth and latency. Below, we discuss the basic components of the
currently available network system, which we used in the experiments described in
Section 3.

Topology and Routing

Within SST/macro, an instance of the network object is defined by its
topological description (i.e., the connections between routers/processors) and a
routing method to compute a path for a message between two processors. As
illustrated in Figure 5, we can currently support torus, fat-tree, hypercube, Clos, and
gamma topologies, detailed descriptions of which can be found in (Dally & Towles,
2004). The product object in this figure enables producing tori of different
dimensions. To define a new interconnect, the user needs to provide a method to
build the topology of the interconnect and a routing method to compute a path for a
message between two processors. The system will take care of the details of
congestion as we will explain in the next section.

| network I

A

[ clos ” gamma ” fattree ” hypercube ” product I e
3

| torus |

Figure 5: Inheritance diagram for network objects.

The current network module is designed for maximum runtime efficiency. The
routing algorithms are static (i.e.,, messages between two processors always follow
the same path, regardless of network status) and follow the shortest path on the
network. Bandwidth is allocated on all links in the message path for the entire time
required to transmit all of the data.

Congestion Modeling

Recent studies (Kamil, Oliker, Pinar, & Shalf, 2009; Shalf, Kamil, Oliker, &

Skinner, 2005) show that many target applications that can reach extreme scales
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display local but irregular communication patterns. Such applications commonly
suffer from network congestion due to hot spots in the network; thus, modeling
congestion is crucial for the accuracy of a network simulator.

From a modeling perspective, irregular communication patterns pose the
biggest challenge, as the network congestion cannot be predicted a priori. Different
parts of the network can be congested at different times, and the congestion
depends not only on network features, such as topology, bandwidth, and routing
algorithm, but also on processor features, as they determine when the messages are
injected into the system. Thus, for such irregular applications, detailed simulation
that accounts for the routes of messages and congestion on individual network
components is essential.

Congestion modeling for regular communication patterns is relatively easier,
as message delays are predictable. For instance, for computations on a regular finite
element grid with only boundary communication, the communication pattern of the
application will match perfectly with a mesh interconnect. Thus, there will not be
any congestion, and it is sufficient to know the latency of a message between two
neighboring points. At the other extreme, when all-to-all communication is
performed, the message delays can be predicted as a function of network
parameters a priori. The ability to predict the message delay can significantly
simplify the network simulation, providing huge speedups in simulation runtime.

As a general purpose tool, SST/macro can support both approaches. The full
interconnect object corresponds to the fully connected interconnect, which provides
a congestion free network. For the purposes of simulation, it is the same as a
latency-based network model. The sharedcircuitinterconnect object, on the
other hand, is designed to model congestion on a link-by-link basis by modeling he
communication between each pair of nodes as a continuous flow of data. Each flow
has bandwidth allocated to it in such a way that the sum of the bandwidth of all
flows passing through a given network link does not surpass the bandwidth of the
link. In our current implementation, the oldest active flow receives all the
bandwidth it can use. The next oldest flow is allocated any remaining bandwidth it
can use, and so on. In this way model network congestion can be modeled efficiently
while still obtaining reasonable accuracy as will be shown in Section 3.

Trace File Driven Simulation

SST/macro is able to generate network traffic and processor workloads using
trace files that record MPI calls and the time spent performing computation
between MPI calls. Currently, two trace formats can be processed: Open Trace
Format (OTF) (Knupfer, Brendel, Brunst, Mix, & Nagel, 2006) and DUMPI. The
mpitrace class (see Figure 4) reads the trace file using the parser abstract base
class which has specializations for both file formats. Additional formats can be
added easily by providing additional parser specializations. Different trace
formats provide differing levels of detail about the MPI call signature, and this
impacts the accuracy of the simulator.

Open Trace Format traces are collected by linking the target application with
the VampirTrace library (VampirTrace). VampirTrace uses the PMPI interface to
intercept MPI calls, and it records trace information in OTF formatted trace files.
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VampirTrace writes a binary file for each process. The OTF standard provides an
interface specification for reading and writing OTF trace files. The binary files can be
read by the otFdump utility provided with the VampirTrace library. This utility
produces ASCII encoded files which the simulator uses as input.

The DUMPI format is a custom MPI trace file format, recorded in binary, which
has been developed as part of the SST/macro simulator. Like OTF, DUMPI files are
obtained by linking the application with a library that uses the PMPI interface to
intercept MPI calls. The DUMPI format records more information than OTF,
including the full signature of all MPI-1 and MPI-2. With this additional detail we are
able to more accurately simulate an application. The DUMPI format also records
return values and MPI request information. This allows error checking and permits
us to match immediate mode MPI operations with the MPI operations that complete
them. In addition, DUMPI allows individual functions to be profiled instead of the
entire program. Processor hardware performance counter information can also be
stored in DUMPI files using the Performance Application Programming Interface
(PAPI). This allows information such as cache misses and floating point operations
to be logged. Such data is recorded both within and between MPI calls. This
information will be used by the simulator in more detailed processor models, as
they are made available.

Skeleton Applications

Trace files are generated with specific application input and parallel task
configuration, yielding a detailed profile of one particular run. Through the
manipulation of parameters used to model the hardware and swapping in different
messaging models and strategies, trace-driven simulation can contribute
significantly to performance optimization and hardware design at parallelism scales
on the same order as that used to generate the trace. However, the challenge of
optimizing codes or designing hardware for extreme scales requires simulation
capabilities long before hardware is actually available for trace file generation.
Additionally, many distributed-memory codes have branch statements that are
dependent on which of a set of requests was matched at a given stage. These
execution details cannot be adequately captured in trace-driven execution, since the
trace file reader cannot retroactively redirect control flow in the application.

Direct execution is an elegant strategy for generating traces at ultra scale on
more readily available hardware, but the requirement of running the full application
hampers parameter studies and limits the scale that is ultimately achievable.
Though creating skeleton applications requires a greater programmer effort than
trace-driven simulation or direct execution, driving the simulator from a skeleton
application provides an immensely powerful approach to evaluate efficiency and
scalability at extreme scales and to experiment with code reorganization or high-
level refactoring without having to rewrite the numerical part of an application. This
is further facilitated by the reduction in code size that happens when the bulk of
computation is removed.

As a basic parallel application, consider a simple ping-pong between pairwise ranks
in a parallel system (rank 0 exchanges data with rank 1, rank 2 with rank 3, etc.).
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The implementation of this program on the simulator, given in Figure 6, looks
almost identical to the native MPI implementation, except for differences in the
syntax of MPI calls. Building on this basic skeleton application, it is easy to test the
effects of varying network topology, hardware layout (e.g. processors per node),
indexing strategies for node allocation, etc. Using a contention-free network model,
mpipingpong has been run with up to 16M nodes on a single workstation
processor with a memory footprint of roughly 4KiB for each MPI peer.

void mpipingpong::run() {
this->mpi_->init();
mpicomm world = this->mpi_->comm_world();
mpitype type = mpitype::mpi_double;
int rank = world.rank().id;
int size = world.size().id;
if(! ((size % 2) && (rank+l >= size))) {
// With an odd number of nodes, rank (size-1) sits out
mpiid peer(rank ~ 1); // partner nodes 0<=>1, 2<=>3, etc.
mpiapi::const_mpistatus_t stat;
for(int half_cycle = 0; half_cycle < 2*niter; ++half_cycle) {
if((half_cycle + rank) & 1)
mpi_->send(count_, type, peer, mpitag(0), world);
else
mpi_->recv(count_, type, peer, mpitag(0), world, stat);
}
}
mpi_->Finalize();

}

Figure 6: Main run loop for a pairwise-exchange MPI ping-pong skeleton
application.

A more significant application is the skeletonization of miniMD, a molecular
dynamics micro-application from the Mantevo project (Mantevo). The full miniMD
application is reasonably small, at 1830 source lines of code, and the skeleton
application is one-quarter the size at 456 lines. Most of the key computations in
miniMD get collapsed down to simple compute(. . .) calls, while all MPI calls and
control logic relevant to execution patterns are retained. The skeleton version of the
time integrator in miniMD (Figure 7) provides an example of how this mixture of
pre-evaluated timing information and original program logic can be used to drive
the simulator.
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void minimd: :integrate: :run(shared_ptr<atom> atm,
shared_ptr<force> frc,
shared_ptr<neighbor> nbr, shared_ptr<comm> cmm,
shared_ptr<thermo> thm, shared_ptr<timer> tmr)

mpiid rank = mpi_->comm_world().rank();
for(int n = 0; n < this->ntimes; ++n) {
env_->compute(interpolator->get("'integrate::run', 0));
iIT((n+l) % nbr->every) {
cmm->communicate(atm);
ke

else {
cmm->exchange(atm) ;
cmm->borders(atm) ;
nbr->build(atm);
}
frc->compute(atm, nbr);
env_->compute(interpolator->get("integrate: :run, 1));
1 f(thm->nstat)
thm->compute(n+1, atm, nbr, frc);
}
}

Figure 7: Time integrator from the skeletonized miniMD application.

The two calls to env->compute(. . .) simulate the actual time integration in
miniMD. The interpolated time values for these calls come from a parametric
evaluation of miniMD performance, but they could just as well be obtained from
detailed microprocessor simulations, runs on emulator systems such as QEMU, or
constitutive performance models. These time values can also be scaled or have noise
added to them to study the effects of load imbalance or rogue OS noise. This
skeletonization effort is being used as a development platform for analyzing and
instrumenting more significant application codes.

3 Results

In this section we present performance results for our simulator, both in terms of
the ability of the simulator to reproduce measured machine performance and in
terms of the computational expense of running the simulator. We also use the
simulator to determine the sensitivity of application runtimes to changes in machine
characteristics in order to demonstrate the power of simulation in understanding
application performance.

Experimental Setup

Performance studies were carried out on two separate platforms. Parallel studies of
AMG were performed on Sandia's RedStorm Qualification (RSQ) machine, which
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consists of 32 dual processor compute nodes and 48 quad processor compute
nodes. These are respectively based on 2.4 GHz dual-core AMD Opteron and 2.2 GHz
quad-core AMD Opteron processors. RSQ consists of a single cabinet, in which case
the interconnect is reduced to a 2D mesh of dimension 4x24. The mesh is wrapped
in the larger dimension. The link bidirectional bandwidth of the mesh is 9.6 GB/s
and the bandwidth of the HyperTransport (HT) that connects the router chip to the
processor is 3.2 GB/s in each direction. Parameters for use in the simulation of AMG
on RSQ were determined by running MPI benchmarks on the system. The simulator
models the bidirectional links in RSQ as a pair of unidirectional links, thus only data
for unidirectional bandwidths were collected. The communication bandwidth
between nodes on an otherwise idle network is limited by the HT link between the
processor and the router chip, and the measured unidirectional bandwidth was in
this case 1823 MB/s. When two pairs of nodes communicate and the network traffic
for each of these pairs is routed over a single router-router network link, the
measured aggregate unidirectional bandwidth over the shared router-router link
was 3245 MB/s. The nearest neighbor latency was measured at 4.44 ps. We also
measured the bandwidth and latency for MPI communication between a pair of
processes on the same node to be 6115 MB/s and 2.8 ps. These results were
obtained using only the quad-core nodes when the machine was otherwise idle.

For applications, we used the mpipingpong skeleton application described in
Section 2 and the AMG2006 benchmark (Henson & Yang, 2002). AMG2006 is a
parallel implementation of the Algebraic MultiGrid method. It was developed at
Lawrence Livermore National Laboratory, and is part of the Sequoia benchmark
suite (ASC Sequoia Benchmark Codes). The code is written in ISO standard C using
MPI for parallelization. The algebraic multigrid method is commonly used to solve
sparse systems of linear equations, especially those that arise in applications of
finite element methods. The dominant computational kernel is sparse matrix vector
multiplication; thus, the memory bandwidth is the main factor that determines
performance. For parallelization, each processor is assigned a portion of the finite
elements (subdomain) and the associated variables/equations in the sparse matrix.
Communication is required to exchange boundary information between
subdomains. The average MPI message size for these noncollective calls is around 2-
10 KB. Collective calls dominate the total communication time, as they take around
90% of the total MPI time. More detailed information about AMG2006 can be found
at (AMG benchmark summary).

Validation of the Simulator

The simulator was validated on results from a range of AMG configurations using
the latencies and bandwidths measured for RSQ above. The ranks were laid out
along the nodes of the mesh, traversing the shorter dimension first. We used
processor counts of powers of 2 from 8 to 128. These were run using 1 processor
per node (ppn), 2ppn, and 4ppn. Two logical grid decompositions were used, a 1D
decomposition and a 3D decomposition. Traces were collected using the lightweight
DUMPI library. Figure 8 shows the measured simulated walltime versus the
measured elapsed walltime with the simulation driven from these DUMPI traces.
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Figure 8: Comparison of simulated and observed runtimes for the AMG2006
program for a variety of node counts and decompositions.

Capabilities of the Simulator

We begin highlighting the capabilities of SST/macro by describing two sets of
benchmark simulations of the mpipingpong skeleton application. The first is used
to measure how much processor time the simulator itself requires, and the second
illustrates how the simulator can be used to study machine performance. Using a
contention-free network model to focus on the process layer performance,
simulations were performed with up to 220 peers. Figure 9 demonstrates the high
performance context switching that our lightweight thread-based process
implementation can achieve. An MPI ping/pong send/receive pair can be simulated
in about 5 ps of time. Nearly 1,000 processors can be simulated before the third
level cache no longer holds the simulator’s data, at which point walltimes begin to
increase significantly. After the third level cache size is exceeded, the cost of
simulating a send/receive pair levels off to around 10.5 ps. Figure 10 illustrates the
results of simulations using a fat-tree network with 4 levels and a radix of 24. The
effects of traffic congestion on the performance of the mpipingpong application
are very clearly observed as the number of nodes surpasses 12, which is the number
of nodes connected to a single radix 24 crossbar in the fat-tree.
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Figure 9: Performance of mpipingpong simulations using a contention-free
network model with up to 220 peers sending a total of 4M messages. The step in the
performance curve corresponds to the point at which the program and its data no
longer fit into third level cache.
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The modular and high performance infrastructure, and growing collection of
hardware and software modeling capabilities provided by SST/macro create a
powerful platform for exploring hardware and software design. We present here the
results of several parametric studies which demonstrate this ability to develop
insights by rapidly performing simulations spanning design spaces. The following
parameter studies were performed using AMG traces and simulator parameters as
described above. Figure 11 and 12 respectively illustrate the sensitivity of simulated
AMG execution times to latency and bandwidth variations. The AMG simulation was
done using DUMPI traces collected using 128 processors of RSQ. Varying only
latency and holding all other parameters constant, we see that for latencies on the
order of 10 us the predicted runtimes are fairly insensitive to changes in the latency.
Reducing latencies even further produces very little benefit in runtime, while at
latencies of 100 ps performance the runtimes begin to increase sharply. Varying
network bandwidth while holding the latency constant, we find that at 1 GB/s or
greater bandwidth, little performance variation is seen in the AMG runtimes, and all
of the network topologies perform similarly. When the bandwidth falls significantly
lower than 1 GB/s, runtimes significantly increase, and variation is observed among
the network topologies, with the torus topology giving slight longer execution times
than fat-tree or crossbar topologies.
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Figure 11: Studies of the sensitivity to network latency of trace-driven AMG
simulations using 128 nodes with a single processor per node. Time is measured as
latency is varied holding the bandwidth constant at 1 GB/s.
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Figure 12: Studies of the sensitivity to network bandwidth of trace-driven AMG
simulations using 128 nodes with a single processor per node. Time is measured as
bandwidth is varied holding the latency constant at 3 ps.

While these initial parameter studies focus on network characteristics, as more
processor and messaging models are made available within SST /macro, this type of
sensitivity study will be possible for a wide range of hardware and software
parameters.

4 Conclusions

We have described SST/macro, a macroscale simulator for the coarse-grained
simulation of applications running large-scale parallel computers. The simulator is
designed to assist in the development of computing architectures and applications.
The simulator has a flexible architecture allowing treatment of different hardware
and software components at various fidelities. Our implementation is extremely
lightweight, enabling large-scale systems to be simulated on a single processor. We
also provide a flexible approach to modeling MPI that can be used to easily
investigate the effect on performance of changes to the MPI library and do not
preclude the investigation of alternative programming models. The simulator can be
driven through trace files collected by running applications on an existing machine
or by skeleton applications which provide enough information for the simulator to
predict the corresponding applications' execution times. We have found that the
simulator reproduces actual runtimes with an error that is typically less than 10%.
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